180=90+(8x-3)+(x^2+9)

Simple and best practice solution for 180=90+(8x-3)+(x^2+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 180=90+(8x-3)+(x^2+9) equation:



180=90+(8x-3)+(x^2+9)
We move all terms to the left:
180-(90+(8x-3)+(x^2+9))=0
We calculate terms in parentheses: -(90+(8x-3)+(x^2+9)), so:
90+(8x-3)+(x^2+9)
determiningTheFunctionDomain (8x-3)+(x^2+9)+90
We get rid of parentheses
x^2+8x-3+9+90
We add all the numbers together, and all the variables
x^2+8x+96
Back to the equation:
-(x^2+8x+96)
We get rid of parentheses
-x^2-8x-96+180=0
We add all the numbers together, and all the variables
-1x^2-8x+84=0
a = -1; b = -8; c = +84;
Δ = b2-4ac
Δ = -82-4·(-1)·84
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-20}{2*-1}=\frac{-12}{-2} =+6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+20}{2*-1}=\frac{28}{-2} =-14 $

See similar equations:

| 12f+9=39+2f | | 12=4g-4 | | 8=b/14 | | -5+5u=5 | | 4=x÷13/4 | | 32,000x+500=45,000x-1,000 | | 4x+1+4x=38 | | X/5+82=5y | | 0.9x+2.7=6.3 | | 2k+-6=4 | | 13=4g-4 | | 5/4=x+9/16 | | -6=5n+3-4 | | (57-x)=(5x+9) | | 2w+1=12 | | 6(4y+3)=18y-30 | | 1.15x+4.25(4)=23.90 | | -v+8=13v-6-12 | | -7x-2(3x+16)=-23 | | 7=3g-2 | | -19-x=9+3x | | -4(x-1)+5x+3=10 | | 7x+6=-5-2x+29 | | x/2+4=-4 | | 2.25y+y+2.25y+25=110 | | h-97/2=1 | | -x+14=-4 | | -7x-15+3x=-43 | | 3+9x=8(x+3) | | 1/25x+1=11/5 | | 14x-3=10x+ | | 4x+5x+9=99 |

Equations solver categories